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ABSTRACT 

The quark-antiquark potential in QCD is discussed with particular 
emphasis on the related &function. The empirical information about the 
potential at intermediate distances, due to the Y- and T-spectroscopies,~ is 
reviewed. Finally we examine the quantitative connection between the c- 
spectroscopy, formed by the anticipated t-quark and its antiquark, and the 
short distance behavior of the quark-antiquark potential. 

I. THE (QQ) POTENTIAL IN QCD 

More than six years ago Appelquist and Politzer’ were led by the idea 
of asymptotic freedom to suggest that heavy quarks would form non- 
relativistic positronium-like bound states, which should be observe 
resonances. 9 as narrow 

Since then the dynamics of heavy quark systems has been 
extensively investigated. Theoretical efforts have been concentrated on the 
static quark-antiquark potential in QCD and on the development of the 
phenomenological potential model. 

The theoretical investigations 
3-7 

have shown that the (Qa potential in 
QCD can be defined as the binding energy of a quark-antiquark pair in the 
limit of infinite quark mass. 
invariant form as a Eucli 
a rectangular Wilson loop $ 

It can be expressed in a manifestly gauge 
ean path integral, the vacuum expectation value of 
of size R x T, 

V(R) = -1im 
T+m 

+<trPeigPdxuAp> 
0 

(1.1) 

Equation (1.1) has provided the starting point for many attempts to compute 
the (Q@ po$ep@al from first principles, and in particular lattice gauge theory 
calculations ) have recently led to very promising results. 

Here we will be mostly interested in the short distance behavior of the 
potential which, due to asymptotic freedom, can be calculated perturbatively 
as a power ser’e i the strong coupling constant. In momentum space the 
potential re,ds6’Q1*T2 

V(Q, u, q&p)) = - 4nC2(Rhm;?S(p) {, +‘$‘) [( +2(++;),n$ 
Q2 

++2(GbqNf] +O(c&(p,,I ; 

(1.2) 



Q, u and a,&u) are the momentum transfeLthe scalf3in dimensional 
regular ,ization and the coupling constant in the h,!S-scheme. As a physical 
quantity the potentipf satisf$es a renormalization group equation without 
anomalous dimension (a = g /4n), 

2 

1 V(Q, p,a(p)) = 0 

which implies the short distance behavior 15 

, (1.3) 

V(Q) (l-23 +O(,“&~;) 
the relation between the scale parameters hp and A% reads 16 

?-) C2(G) - 9 Nf )I . (1.5) 

A represents the characteristic scale parameter of the coupling 
constad IY.~(~), which can be defined in terms of the (Qa potential (cf. Eq. 
(1.2)), 

ap(d z - 4nC2(R) 

gC2(G)-yNf) +O(a&$uj)]. (1.6) 

cx 
f 

(11) is a physical quantity, the strength of the quark-antiquark interaction 
a momentum transfer l.~, and therefore gauge and scheme independent. For 
SU(3) and 3 flavors one obtains 

a,(p) = cr&p) 
a& 1 

I + 0.78b0 4a + 0( a f&p)) ] (I.74 

Ap = I.48 ~~~ 

The coupling constant ap(p) satisfies the inequality 13 

(!.7b) 

a&&u) < ap(!-d < a MoM(!d ? (1.8) 

and may be a useful expansion parameter for other processes in perturbative 
QCD. 

The static (Q@ potential is a quantity which has the dimensions of 
mass. It depends on dimensionless parameters (e.g. group factors) character- 
izing the QCD Lagrangian and (if the masses of light quarks can be neglected) 
a single scale which we may choose to be A or the string tension k. In order 
to disentangle these two ingredients which determine the (Q@ interaction it 



b-function of the r yning coupling 
The asymptotic behavior of p(Q ) for large Q 

(1.9.s) 

and at small Q2 the hypothesis of linear confinement implies 

p(Q2) - x [ 1 + o(l) I 
Q*O Q2 

, (1.9b) 

where the parameter K is related to the string tension k and the Regge slope 
a’ of light hadron spectroscopy, 

a’ = 1 1 
six= 4it2C,(R)K 

The b-function of the coupling constant p is givin by 

BP(p) = Q2 a p(Q2) 
aQ2 

, (1.10) 
Q2=Q2b) 

and from Eqs. (1.9) we read off its asymptotic behaviors 

BP(p) - -bOp2 - b, p3 + O(p4) 
PO 

, (I.Ila) 

BP(P) - -P(l+o(I)l 
Pt- 

. (I.lIb) 

The differential equation (1.10) can be integryed using the boundary 
conditions Eqs. (1.9) for large or small values of Q . The requirement, that 
both solutions are identical, leads, as a2consistency conditio? to a relation 

e dimensionless quantity K/Ap, or equivalently afATs, and the B- 

2 
In (@A,& = - In (4nC2(R)) - o $- $C2(R)+Nf 

bl -r;’ -71nbo 
0 bO 

We note that precisely the subtraction of the leading term at large p and the 
one- and two-loop contributions at small p are required in order to render the 
integrals over the B-function in Eq. (1.12) finite. 

Obviously, the B-function determines the relation between a’ and A -. 
Setting the scale of the theory by fixing a’ or Ars determines the ( 8% 
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potential in terms of its B-function. In principle, the B-function can be 
evaluated directly in QCD. At present, however, this has not been achieved. 
Yet there exists a simple empirical B-function which has the following 
properties: 

6) at small and large values of P, b (p) conforms to the theoretically 
required asymptotic behavior of Eqs. (1.1 I)! 

(ii) at intermediate values of P, t3 (p) is empirically correct, as it leads 
to an accurate description of the Y at?d T spectroscopies, which probe the 
quark-antiquark coupling strength at intermegiate distances; 

(iii) t Integral over B (p) yields all\ 
CL’ s I GeV’corresponds to d)scale paramet~~~~~O~~~~~e~~~s~~~u~~ 
for a’ and A- are consistent with results o amed from light hadron 
spectroscopy a% deep inelastic scattering proceqsgs. 
This B-function is given by the following Ansatz: 

8$7 = - 
bOP*(l-e 

’ (1.‘3) 

where the parameter II is determined from the Y and T spectroscopies, which . 
yield !L = 24. 

The B-function Ep, (1.13) is closely related to the (Qa potential -. 
proposed by Richardson. The B-function, which corresponds to Richardsor I’S 

running coupling constant, is obtained from Eq. (1.13) in the limit !Z + OD (or by 
setting b, = O), 

BRich(p) = _ bop2[, _ ,$bop] 

Its intriguing feature is the essential singularity at p = 0. Precisely this 
structure is expected if classical field configurations are important for the 
transition between weak and strong coupling regimes. Yet the two-loop 
contribution to the B-function is required in order to relate the short distance 
behavior of the (Qa potential to a well-defined QCD scale parameter, say 
Am. These considerations led to the &function Eq. (1.13). 

The discussion of this section may be summarized as follows: 
(i) The (QQ) potential can be defined in QCD as the binding energy of a 

quark-antiquark pair in the infinite-mass-limit; it can be expressed in terms 
of the Wilson loop integral. 

(ii) The short distance part of the potential has been evaluated in 
perturbation theory. The physical coupling constant a (u), which is defined in 
terms of the quark-antiquark potential, may be a? convenient expansion 
parameter for other processes in perturbative QCD. 

(iii) The (Q@ potential can be expressed in terms of the dimensionless 
B-function 8 (P) and a dimensionful constant which one may choose to be the 
scale parameter A or the string tension k. A simple empirical Ansatz for 
8 (P) has been obtained which conforms to the theoretical expectations for 
s&all and large values of P; at intermediate coupling strengths f3 (p) is 
empirically correct as the resulting potential describes successfully phe Y- 
and T-spectroscopies. 
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II. THE (QQ POTENTIAL AT INTERMEDIATE DISTANCES 

Over the past six years the potential model’ for heavy quarkonia has 
been extensively developed. As we have outlined in the previous section one 
expects theoretically the static (Q@ potential to be Coulombic at short 
distances and to become linear at large quark-antiquark separation. The 
“Coulomb plus linear” potential, which is obtained by a simple superposition 
of both asymptotic limits, therefore represents the prototype,gf a QCD-like 
potential model, and its detailed study by the Cornell group has led to a 
successful description of the Y and T families. 

More recently, var& 
logarithmic modifications 

us authors have investigated the effects of 
of the Coulombic part of the potential which are 

expey>ed as a result of vacuum polarization corrections in QCD. Richard- 
son’s potential, in particular, yields an excellent description of the (c& and 
(b&spectra. In order to relate the short distance behavipj of the (Qa 
potential to a well-defined QCD scale parameter, say ?rS, 
contribution to the &function and the one-loop correction to 

the two-loop 

have to be inc r orated 
the potential 

potential mode?’ 
consistently. These considerations led to a new 

whit 
and, within this framework, to a value of A- = 0.5 GeV 

40 determined from quarkonium spectroscopy, is consiste #fS with ana- 
lyses of deep inelastic scattering experiments. 

QCD-like potential models have achieved a successful description@ the 
Y and T spectroscopies, in particular with respect to leptonic widths and 
hyperfine splittings which are most sensitive to the s2qrt distance part of the 
(QQ potential. However, this success is not unique. It IS shared with the 
class of logarithmff and small 
Quigg and Rosner and Martin, 

pvwer. potentials, investigated in detail by 
which do not conform to the theoretical 

expectations at either small or large distances. Thus, so far quarkonia have 
not led to any conclusive evidence for the theoretical preconceptions based 
on QCD. Yet the Y and T families have determined the quark-antiquark 
potential at intermediate distances: the four phenomenologically successful 
potentials, shown in Fig. I, all coincide numerically at distances r with 
0.1 fm < r ‘< 1.0 fm, although their functional forms are very different. At 
large and small distances a variety of asymptotic behaviors appear to be 
compatible with present experimental data. *5 26 

The evidence for a flavor independent ’ (Qa potential has also been 
established in a model independent way by use of the inverse scattering 
method. Using mass differences and leptonic widths of the S-state 
or T families as input and assuming different “correction 
van Royen-Weisskopf formula (which reflect uncertainties of unknown rela- 
tivistic and higher order radiative corrections), the (Q@ potential has been 
constructed. Again, as shown in Fig. 2, it appears to be uniquely determined 
at distances between 0.1 fm and 1.0 fm where it coincides with the specific 
models shown in Fig. 1. Direct evidence for the flavor independence of the 
static potential is provided by Fig. 3, where the potentials constructed from 
the Y and T families are compared; they agree remarkably well in the 
distance range 0.1 fm - 1.0 fm. The accuracy to which potential models can 
account for the properties of quarkonia is demonstrated by table I, where the 
predictions of various models for the three narrow S-states of the T family 
have been compiled. We emphasize that the non-relativistic potential model 
of heavy quark systems works m 
of coupled channel calculations 

Eh better than one might expect on the has 
or estimates of relativistic corrections. 
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Fig. 1. Various successful potentials are shown. The numbers refer to the 
following references: (1) Martin, Ref. 23; (2) Buchmtiller, Crunberg and Tye, 
Ref. 16; (3) Bhanot and Rudaz, Ref. 24; (4) Cornell group, Ref. 18. The 
potentials (11, (3) and (4) have been shifted to coincide with (2) at r :: 0.5 fm; 
the “error bars” indicate the uncertainty in absolute, r-independent norma- 
lization. States of the Y and T families are displayed at their mean square 
radii. From Ref. 16. 
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Fig. 2. Three potentials constructed from T data by means of the inverse 
scattering method, corresponding to three different “corr 
the van Royen-Weisskopf formula, 
Dot-dashed line: p = 1.0; solid line: 
short-dashed line is the QCD-like potential of ref. 16, with the scale 
parameter chosen as Am= 0.5 GeV. From Ref. 26. 
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Table I. Predictions of various potential modeJs for the T family, 

compared with experiment. h’lodel 1: Uartin 23 ; model 2: Buchmtiller, 

Grunberg and Tye, I6 ki$; 0.5 GeV; model 3: Richardson 17; 

model 4: Bhanot and Rudaz (the range of predictions, which are 

dependent on the b-quark mass, is given); model 5: Cornell group. 18 

The first column contains the Ieptonic widths in keV, the second 

and third columns the excitation energies in MeV and, in brackets, 

the ratios of the leptonic widths with respect to the T leptonic width. 

From Ref. 16. 

Experiment 

a) Ref. 36 

b) Ref. 37, 38 

&,!odel 1 
(Martin) 

Model 2 
(Buchm:jller, 
Crunberg & Tye) 

hlodel 3 
(Richardson) 

Model 4 
(Bhanot and 
Rudaz) 

Model 5 
(Cornell group) 

T 

1.29 t 0.22 

1.02 i 0.22 

1.10 25 0.17 

--- 

I,.07 

--- 

1.07 - 1.77 

--_ 

T' 

553 + 10 

(0.45 _+ 0.08) 

560 f 3 

(0.45 2 0.07) 

560 

(0.43) 

555 

(0.46) 

555 

(0.42) 

561 - 566 

(0.47 - 0.76) 

560 

(0.48) 

T” 

--- 

889 2 4 

(0.32 fi 0.06) 

890 

(0.28) 

890 

(0.32) 

886 

(0.30) 

881 - 879 

(0.34 - 0.51) 

898 

(0.34) 
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x (GeV-‘1 

Fig. 3. Comparison of potentials deduced from the Y and T families. The 
energy scale is appropriate for the Y spectrum. The label on the left-hand 
ordinate refers to the potential constructed using T data (solid curve). The 
label on the right-hand ordinate refers to the potential constructed using Y 
data (dashed curve). p = 1.4 (cf. figure caption of Fig. 2). From Ref. 26. 

The ultimate theory of strong interactions will have to explain why the 
corrections to the non-relativistic limit are so small. 

We conclude: 

and 
(i) QCD-like potential models provide an accurate description of the Y 

T families. However, this success is shared with power potentials, which 
disagree with theoretical expectations based on QCD. Thus, no direct 
unequivocal evidence for asymptotic freedom has been obtained so far on the 
basis of quarkonia. 

(ii) The (QQ potential has emerged as a measurable quantity, which can 
be directly compared with predictions derived from any fundamental theory 
of strong interactions. The Y and T spectroscopies have determined the 
quark-antiquark potential at distances between 0.1 fm and 1.0 fm. 
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IJI. THE (Qa POTENTIAL AT SHORT DISTANCES 

As we have discussed in Sec. I, the (QC$ potential hgslpeen computed 
perturbatively in QCD. 
flavors) 

In coordinate space the result ’ reads (for 4 

a’(r) 
vQCD(r) Ly _ 0 +- 

r+O 
, 

as(r) = g 1-g $J + ++ 

[ 
i 

++) + +o(-$)] , 

t =In-&-- 

r “m 
, (3.1) 

where y E = !.5772... 
tive short distance 

is Euler’s constant. In order to compare this perturba- 
behavior with a phenomenolo 

k 
ical 

specify at what distances corrections to Eq. 
potential, one has to 

3.1) are expected to be 
negligible. In analyses of deep inelastic scattering processes comparison with 
perturbative QSD i s considered to be justified for momentum transfers Q, 
which satisfy Q /A > 100. Correspondingly, at distances r, with 

r<r 1 
c ’ r2A2- 

= 100 , (3.2) 

c MS 

vQcD(r) should be a good approximation to the (Qa potential. 
distances r < r 

Indeed, for 
c, the corrections of relative order I/t in Eq. (3.1) are less than 

s 15% and the perturbation series is self-consistent. 
effects, such as gluonic vaclt]r’m fluct$etions2g 

Nonperturbative 

expectation value 
haracterized by a nonvanishing 

dirnen~~~a~~~~~~~~~~~~cti~~~ess tahPa?r%.to be neg’igib’e’ a 

potential8 appear to be clearly different in this region, and a quantitative 
analysis - less than or equal to 0.1 GeV appear 
indeed incompatrble wrth quarkoni shows. that Fes Of *+J& spectroscopy~ For values A- > 0.2 
GeV perturbation theory becomes unreliable already at distances r a3 .I fm. 
Therefore present quarkonia cannot distinguish in a model independent way 

formed by the anticipated t-quark and 
of the scale parameter. Figure 

5 shows two potentials whose asymptotic behaviors at short distances are 
characterized by the scale parameters A- = 0.2 GeV and A- = 0.5 CeV. 
The indicated mean square radii illustrate y2wn to which distavses the (Qa 
potential will be probed by (ti) bound states of a given mass. The properties 
of the IS-state of the S-spectroscopy will be most sensitive to the short 
distance part of the potential. Figure 6 shows the IS-leptonic widths as a 

the t-quark mass for A 
; for a t-quark mass of I@= 

0.2 GeV, ArS = 0.5 GeV and Martin’s 
GeV various predictions of the different 
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Fig. 4. 2-100~ “asymptotic freedom” 
values of A- at distances r < r rc’= l/(100 A-1 

tentials fqr 4 flavors and different 

potentials (#‘sand (2) of Fig. l?&‘also displayed. 
For comparison the 

h%e “error bars” indicate 
the uncertainty with respect to absolute normalization. From Ref. 16. 

models are listed in table II. It appears obvious that a (ti) system with 
m > 40 GeV will clearly distinguish between power potentials and QCD-like 
m6d<ls as well as between different values of A-. 

The main problem in the determinationMA A by means of the (Q@ 
potential is the uncertainty in the absolute normalization of the potential, i.e. 
the uncertainty in our knowledge of the c-quark and b-quark masses. The c- 
spectroscopy will measure the (Q@ potential down to distances of about 0.04 
fm, where a change of A- 
potential by about 300 b@. 

by 100 MeV will change the “asymptotic freedom” 
Th e uncertainty in the absolute normalization of 

the empirical potential of about f 400 MeV (cf. Fig. I) will lead to an 
uncertainty of about % 150 MeV in the determination of A. This situation 
would be improved through a better theoretical understanding of finite 
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-4 

-5 

-6 

Fig. 5. Two (Qa potentials which approach “asymptotic freedom” potentials 
with A- = 200 MeV and A- = 500 MeV at short distances. 

z?d$??t quark masses m 

Mean square 
t ground states (c!&?oted as &(2m )) are shown for Am = 500 MeV 

t. From Ref. 16. 

Table II. Comparison of (ti) spectra for different potential 
models, with mt = 30 CeV. 

. 
E2 - El !.MeV 1 

ree(2s)/ree(lS) 

E3 - El 1 MeV 1 

r ,,(3S)/ ree(lS) 

hfartin23 

512 

0.48 

814 

0.34 

1 . 
I 

qm=0.2 GeV 16 

610 

0.53 

913 

0.28 

,ss=0.5 GeV” 

762 

0.30 

1090 

0.18 

801 

0.29 

Ii36 

0.17 
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Fig. 6. Ground state leptonic widths as function of t-quark mass mt. The 
solid lines correspond to the p?yntials of Fig. 5. The dashed line shows the 
results of Martin’s potential. Here we have ignored weak interaction 
effects, which would only enhance the differences. From Ref. 16. 

structure, hyperfine structure and El transitions which would lead to a more 
precise determination of the quark masses. 

It is also conceivable that the scale parameter will be determined more 
accurately through the measurement of electromagnetic and hadronic decay 

~~~~h~o~;~;~d%35 o leading order QCD radiative corrections have recently 
For instance, a measurement of the hadronic width of a 

60 GeV toponium state with an accuracy of ~20% would determine the strong 
coupling constant of o (60 GeV) within S7% and thereby measure A- with 
an uncertainty of abou? f 100 MeV. This, in turn, would fix the norma zatton Eyzs 
of the (QQ) potential up to +300 MeV and thereby determine the c-quark and 
b-quark masses within f 150 MeV! 

Thus the c-spectroscopy will not just determine the (Q@ potential at 
short distances and the QCD scale parameter A, it will also have 
consequences for the Y and T spectroscopies: we can expect a better 
determination of the c- and b-quark masses and a very accurate test of the 
flavor-independence of the potential at intermediate distances due to’ the 
large number of c-states with mean square radii in this region. For instance, 
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Fig. 7. (ti) S-wave bound states below threshold as function of the t-quark 
mass. The binding energies have been computed for a potential which 
corresponds to AT = 300 MeV; it satisfies V(Ars = 200 MeV) pi 
V(Am = 300 MeV) Lb&m = 500 MeV). From Ref. 16. 

as shown in Fig. 7, a (ti) system of 649 e will have 8-9 narrow S-states, in V 
accord with the semiclassical estimate 

n= 2 
mt K ( > AT c 

(3.3) 

and a corresponding numer of P-, D-, F-,... states which will le 
“R to an 

extremely rich spectrum of electromagnetic and hadronic transitions. 
Predictions for the S-spectroscopy up to ground-state masses of 60 GeV 

een made in a model independent way based on inverse scattering 
The three potentials, shown in Fig. 2, which are constructed from 

the masses and leptonic widths of the T family, lead to a range of predictions 
for toponium, thus reflecting the degree to which the <-spectroscopy can 
already be anticipated from our understanding of the T-spectroscopy. The 
leptonic decay widths of the first four S-states are shown in Fig. 8. The main 
conclusion is that the properties of the IS ground state, in particular its 
leptonic width, will be most important for the determination of the short 
distance behavior of the (Qa potential. 

We conclude: 
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(i) VQCD(r), t he “asymptotic freedom” potential calculated in perturba- 
tive QCD, is expected t2 Soincide 
distances r < rc, where I/r,!,% F 100; 

with the empirical (Q@ potential at 

(ii) the Y and T spectroscoples lead to the lower bound on the QCD scale 
parameter A, An > 0.1 GeV; 

(iii) the rf!sp ec roscopy, with t m 
5 

> 40 GeV, will determine the scale 
parameter A, if AFS < 0.5 GeV; 

(iv) the <-spectroscopy may lead to a better determination of the c- 
quark and b-quark masses; 

(v) the properties of the IS toponium ground state will most conclu- 
sively determine the short distance behavior of the (Qa potential. 

IV. SUMMARY 

The main conclusions are as follows: 
(I) The (Qa potential can be defined in QCD as the binding energy of a 

quark-antiquark pair in the infinite-mass-limit. The physical coupling 
constant a (u), which is defined in terms of the potential, may be a 
convenient expansion parameter for other processes in perturbative QCD. 

(2) The (Qa potential can be expressed in terms of the dimensionless fl- 
function f3 (p) and the scale parameter A (or the string tension k). A simple 
empirical ansatz for B (p) has been obtaiEed which satisfies the theoretically 
required boundary con&tions at large and small values of p and provides an 
accurate description of the Y and T families. 

(3) The (Q@ potential has emerged as a measurable quantity, which 
allows a comparison with QCD at all coupling strengths. The Y and T 
spectroscopies have determined the potential at distances between 0.1 fm and 
1.0 fm. 

(4) Comparison of the “asymptotic freedom” potential of perturbative 
QCD with the em.pirical (Qa potential, determined by Y and T data, leads to 
a lower bound on the QCD scale parameter, AK> 0.1 GeV. 

? 
The c- 

spectroscopy, with m > 40 GeV, will determine the Q@ potential down to 
distances of s 0.04 fn?. If A- < 0.5 GeV, as expected on the, basis of deep 
inelastic scattering processes, “?his will lead to a determination of the QCD 
scale parameter A. 

(5) The S-spectroscopy will have important consequences for Y and T 
physics. It will provide a very accurate test of the flavor-independence of 
the (Q@ potential at intermediate distances and may also lead to a more 
precise determination of the c-quark and b-quark masses. 
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